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A closed-form expression for the capacity of an array of correlated Gaussian

channels is derived. It is shown that when signal and noise are independent, the

array of observables can be replaced with a single observable without diminishing the

capacity of the array channel. Examples are provided to illustrate the dependence

of channel capacity on noise correlation for two- and three-channel arrays.

I. Introduction

In this article, we formulate the framework to evaluate the channel capacity of an array system. We

define the channel capacity of an array channel as the maximum of the mutual information between a

single input source and an array of n output observables over all distributions on the input that satisfy

certain constraints (e.g., power, bandwidth, discrete or continuous, etc.). We derive a closed-form general

formula to the channel capacity of an array of n Gaussian channels. This formula applies to correlated and

uncorrelated noise, as long as the Gaussian assumption holds and the second-order statistics (covariance)

of the signal and noise sources can be characterized. This formula allows one to find the channel capacity

of various array constellations and orientations in the presence of correlated and uncorrelated noise. Some

of the interesting results that we observed are as follows:

(1) When the noise sources are uncorrelated, the array channel capacity is equivalent to the

channel capacity of a single Gaussian channel with a signal-to-noise ratio (SNR) equal
to the sum of the SNRs of the individual channels.

(2) The array channel capacity is lower bounded by the channel capacity of the channel with

the highest SNR.

II. Problem Formulation

We consider transmitting a single complex source through n channels, as illustrated in Fig. 1. Let

EXiX], A EZiZ_, and cry, ij = -- -- X,I' X,2' ,ax,_j = az,o = "_ EY_Yj* for 1 < i, j < n. Notice that a 2 a 2 .-., a_ n are

the signal powers as seen by the receivers; 2 2 a2
aZ,l,cYz,2," " ' , z,n are the noise variances; and ay,12, Cry,2,2...,

¢72
y,n are the channel output variances. The array channel capacity is given by
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Fig. 1. Array channel model.

L_
maxC,,r.ay I(Y1, Y2,''', Y.; X)
p(=)

= max{H(Y1, Y2,""', Yn) - H(Y1, Y2,'", Y_[X) }
p(_)

= _a_{H(YI, Y2,"'", Y,_) - H(Z,, Z2,..., Zn)}
(1)

where we further assume a power constraint on X, and where the Xi are obtained from X by a deter-

ministic operation on each i. The interpretation of this model is that signals in the various channels

can have different magnitudes and phases, but that the differential delays between the waveforms are

negligible, having been removed by delay compensation. Thus, the signal path differences between the

various channels either are negligibly small, as in the case of array-feed or phased-array applications, or

have been properly equalized, as in the case of antenna arrays.

III. Capacity of an Array of Gaussian Channels

In the following derivation, we will use some results from Cover and Thomas [1]. Since Z T

(Z1, Z2,'", Zn) is a complex Gaussian random vector, H(Z) is given by [1, Theorem 9.4.'t]

1 log2(27re)niOzi bits/channel use
_/(Z) =

(2)

where Oz is the covariance matrix of Z, and IOz[ is its determinant. From Theorem 9.6.5 of [1] and

under the assumption that the input source is power constrained to P, the input source X that maximizes

H(Yl,lI2,'-',Yn) has a Gaussian distribution. The maximum mutual information and, therefore, the

array channel capacity are achieved with a Gaussian source, and the output observables Y1,Y2,'", Yn

are correlated complex Gaussian variables. Using Theorem 9.4.1 of [1], H(Y1, Y2,'", Yn) is given by
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1 log2(2ne)n[Ov I bits/channel useH(Y1, Y'2,'"", Yn) = (a)

where Oy is the covariance matrix of YI, Y2, • • •, Yn. Tile array channel capacity is

1 IOYI bits/channel use
Carray = _ log2 ]-_ (4)

This formula can also be found in [1, Eq. (10.98)]. Notice that this formula makes no assumption on the

pairwise correlation between the signal X_ and the noise Zj.

Next, we consider the problem from the viewpoint of communications theory and assume that tile

additive complex Gaussian noise Z is independent of the signal X. For the Gaussian channel, we let

Ox = S .st, where S T = (S1, $2,..., Sn) is a deterministic vector with )-]i_1 ISit 2 = P, and _ is defined

as the conjugate transpose of a vector (that is, St = s'T). Now the covariance matrix of the observables

can be expressed as

Oy=Ox+Oz=SS t+Oz (5)

since, in this case, ES, Z_ = 0 for 1 <_ i,j <_ n. With the above notation, Eq. (4) can be evaluated as

1 I.s _st + Ozl
Carray = _ log2 iOzl bits/channel use (6)

emphasizing tile independent signal and noise components of tile observable covariance matrix. Using a

corollary to Theorem A.3.2 in [3], the ratio of determinants in Eq. (6) can be written as a quadratic form
of the inverse noise covariance matrix and the signal vector as

I_s_st + Ozl
iOzl - 1 + StOzlS (7)

and, hence, tile array capacity may be equivalently expressed as

1
Carray = [ log2(1 +_stOzlS) bits/channel l_lSe (8)

While Eqs. (6) and (8) are mathematically equivalent, Eq. (8) is particularly important for the following

reasons: First, it provides useful insights into the behavior of array capacity and, second, it suggests a
simple receiver structure for processing the array observables.

IV. Receiver Structure for an Array of Gaussian Channels

Let w T = (Wl, W2,'-" , Wn) be a comt)lex weight vector. It follows that the SNR of the scalar output
v = wTy (y__T= (Y1, Y2,'", Yn)) is given by
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SNR- IwT_[2
E(IwTZI 2)

wTs Stw*

w__Ozw_*
(9)

This expression holds for any weight vector. As shown in the Appendix, the weight vector w that

maximizes the SNR is given by

= • (lO)

where a is an arbitrary complex constant. Substituting Eq. (10) into Eq. (9) yields the optimal SNR

SNRmax = StOZ1.._ S (11)

which is seen to be the same as the quadratic form in Eq. (8). Thus, the quadratic form in Eq. (8) is

equivalent to the maximum of the SNR obtained from an optimally weighted sum of the array observables.

The array receiver structure implied by this observation is shown in Fig. 2.
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Fig. 2. Receiver structure derived from Eq. (8).

It is well known that a Gaussian source achieves capacity for a Gaussian channel [1]. Since the output

of the receiver in Fig. 2 is a weighted sum of the X_ plus Gaussian noise, it is a Gaussian random variable

for any value of the source X: hence, the output is a Gaussian channel. Since the array capacity in Eq. (8)

depends only on the maximum SNR of the output variable v, it follows that the capacity of the scalar

channel of Fig. 2 equals the capacity of the array channel of Fig. 1. This is an important observation since
it enables the conversion of an n-dimensional vector observable to a single-dimensional scalar observable

without decreasing the capacity of the channel.

Writing Eq. (8) in terms of Eq. (11) emphasizes the point that the channel capacity of the array

depends only on the maximum SNR that can be achieved by a weighted sum of the array observables:

1

C_r_y = _ log2(1 + SNI_:_) (12)

It follows that the maximum of the mutual information between v and X can also be stated directly as
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_a_{H(v) - H(vlX)} = C, = Ca,-rav (13)

which is simply the capacity C, of the scalar channel.

When the components of the noise vector Z are uncorrelated, both the covariance matrix Oz and

its inverse Oz 1 become diagonal matrices, with the diagonal element of the inverse matrix equal to the

inverse of the corresponding diagonal element of the covariance matrix. With the ith diagonal element of
-2 the maximized SNR becomesOz equal to az,_,

SNSma x = ..S_'_z1S _- _ IS*l_
0-2

i=l Z,i

(14)

where the right-hand side of Eq. (14) is recognized as the sum of the individual channel SNRs. The array
capacity follows directly as

C, rr_v = _1 log 2 1 + ,=, --a2z#] bits/channel use (15)

Thus, the capacity of an array of Gaussian channels with uncorrelated noise is equivalent to that of a

single Gaussian channel, with an SNR equal to the sum of the individual channel SNRs.

For the correlated noise case, the observation of the noise in any channel provides useful information

about the noise in every other channel. This concept is called "noise cancellation" in the adaptive signal-

processing literature.

V. Examples

Some examples of simple array channels that allow closed-form analytic solutions and provide insights
into the problem are considered.

A. Two-Channel Array

Consider a two-channel array with signal vector _S = (S1, $2) and noise covariance matrix

0-2 P0-Z,10-Z,2 ]
OZ = Z,1

P*0-Z,10-Z,2 0-2Z,2 J
(16)

where EZ1Z_ = P0-z,10-z,2, EiZll 2 = 0-2z,_,and EIZ2] 2 = 0-2z,2.The determinant of the noise covariance

matrix is [Oz[ 2 2= 0-z,10-z,2(1 - Ip]2); its inverse is given by

OZ 1 --
1 -Ipl _

1

0-2
Z,1

--p*

0- Z,10- Z,2

-p

0- Z,10- Z,2

1

0"2,2

(17)

and the resulting array channel capacity is
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C_,,.,-au = _ log2 1 + 1 --ipl 2 _ _ az, laz,2_, gA +
(18)

As the magnitude of the correlation coefficient approaches 1, the array capacity grows without bound

except for the special case when ISlt/az,1 = IS21/az,2 and the phase of p cancels the phase of S_$2.

This corresponds to the singular detection case in communications theory where the signal is recovered
without error in the absence of noise. If the noise is uncorrelated (p = 0), the array capacity depends

only on the sum of the channel SNRs, as noted above. If the noise is correlated but the signal is 0 in one
of the channels (for example, tS21 = 0), the array capacity reduces to

1 log2 (1 + [$112 ) [$2{=0Carray -- _ 0"2,1('1 --_[,O[ 2) '
(19)

This "noise-cancellation" result is independent of the phase of the correlation coefficient, implying that

the complex noise samples in the two channels need not be phase aligned for perfect cancellation--in

effect, the optimum weights defined in Eq. (10) ensure that the noise phases are properly aligned. The

array capacity for the two-channel noise-cancellation case corresponding to Eq. (19) is shown in Fig. 3
for several SNRs.
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Fig. 3. Array channel for the two-channel case, IS21 = 0.

B. Three-Channel Examples

Next, we consider some three-channel examples, but only for the case of real signals and noise (in

other words, here we ignore phase effects). We consider the triangular and the linear constellations as

shown in Fig. 4, each having an array of three elements. We assume that the correlation coefficient of Zi

and Zj, which is denoted by Pij, is geometrically related to the distance dO of array elements i and j as
follows:

Pij = pid,jl (20)

where max{-1, a} <_ p _< min{1, b}, and a and b define the range [a, b] C_ [-1, 1] such that the covariance
matrix ez is legal, that is, Oz is non-negative definite and IOzl _> 0. Also,
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{b)

Fig. 4. Array configurations of three elements: (a) triangular configuration and
(b) linear configuration.

EZiZ j = pijo'z,i_z,j (21)

The covariance matrices O_ and 0 2 of the triangular and linear constellations, therefore, are given by

0-2 P0-z,10-z,3 ]

z,1 paz,10-z,2

{_1= paZ, laZ,2 0"2Z,2 PO'z,20"Z,2 |
2

k po'z,l O'Z,3 pcr z,20"z,3 Oz, 3 J

(22)

and

0-2

z,1 P°Z, laZ,2 p26rz,10-z,3 "

02z = po.zAo.z, 2 0-2z,2 P°'z,20" z,2

kp2cTZ, lOZ,3 p_rz,20"z,3 0,2Z,3

(23)

By substituting O_ and O 2 into Eq. (8), we can evaluate the array channel capacities of the above array

constellations as a function of p. We consider two cases: channels having different SNRs and channels

having the same SNR.

1. Channels Having Different SNRs. Let (72X,1 = 1, a2X,2 = 1, and _r2X,3 = 9; let 0"2z,1 =

0.16, 0"2,2 = 0.49, and a 2 = 1.44. The array channel capacities of the two constellations as a function ofz,3

p are given in Fig. 5. We observe that the array channel capacities approach infinity when p approaches

-0.5 and 1.0 for the triangular constellation (when ]O_l = 0) and when p approaches -1.0 and 1.0 for

the linear constellation (when IO1] = 0). The channel capacities of both constellations are the same

(3.2 bits/channel use) at p = 0, and they are lower bounded at 2.75 bits/channel use for this example.

Thus, the maximum degradation due to noise correlation is only 0.45 bits/channel use.

2. Channels Having the Same SNR. Let o.2 = 1.0, a_, 2 = 1.0, and 0-2 = 0.25; let 0-2x,1 x,3 z,1
0.16,a_, 2 = 0.16, and a 2 = 0.04. The array channel capacities of the two constellations as a functionz,3

of p are given in Fig. 6. Again we observe that the array channel capacities approach infinity when p

approaches -0.5 for the triangular constellation and when p approaches -1.0 for the linear constellation.

However, both channel capacities approach 1.43 bits/channel use for the real signal and noise case, the

channel capacity of a single channel, when p approaches 1.0. This is apparent from the fact that the

receiver actually sees three scaled copies of the received signal plus noise, and this is equivalent to looking
at one channel alone.

The observations described in the two examples conform to our intuition, and the general formula

given in Eq. (8) predicts all these observations.
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Fig. 5. Array capacity of Gauaeian channels:
different SNRs.
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Fig. 6. Array capacity of Gausaian channels:
same SNR.

Vl. Summary

The capacity of an array of n Gaussian channels has been derived. The array channel was modeled

as n observations of a single source, in the presence of additive Gaussian noise. It was shown that an

optimally weighted sum of the array outputs achieves the same channel capacity as the array channel.

Several examples of two- and three-channel arrays were discussed, and graphs of channel capacities were

provided to illustrate array capacity as a function of noise correlation as well as display examples of

singular behavior.
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Appendix

Derivation of Optimum Combining Weights

The following is a simple derivation of the optimum combining weights that maximize the SNR. Other

derivations can be found in the adaptive signal processing literature [4,5] and in this issue [6].

We start with a derivation for the uncorrelated noise case (diagonal covariance matrix). It is shown in

[2], using the Cauchy-Schwarz inequality, that for the uncorrelated case the optimum combining weight
vector U is proportional to

u = (e51v) *

where V is a signal vector, OD is a diagonal matrix with components a 2 and 001 is its inverse. When
-- Z,i_

the weight vector U is applied, the combined SNR is maximized, achieving its upper bound,

SNRm,x = VtOD1V_

Next, consider a correlated Gaussian noise vector with covariance matrix Oz, and let D be a unitary

matrix that diagonalizes Oz. With Dt the conjugate transpose of D, D -1 its inverse, and D_ = D -1

(unitary), we can write the diagonal covariance in terms of Oz and D as

0 D m DOzD T

Thus, D rotates vectors from the uncorrelated into the correlated reference frame, without changing their
length, while its inverse rotates them in the opposite direction. Let _S = D-Iv be a signal vector, and let

W -- D-1U be a weight vector in the correlated frame. The optimum weights can be written in terms of
Oz and _S as
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U = (0D_V)" = (D*0)Dt)-:__V"

= (0)Dt)-ID*-I__V *

= (Dt)-10_-I(D*-IV *)

= D(ezl_S) *

This is the optimal weight vector in the uncorrelated frame, in terms of Oz 1 and S. Applying the inverse

rotation operator D -1, we obtain the optimum weight vector in the correlated frame as

W = D-1U__ = D-1D(OzIS) * = (OzlS) *
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